The Marian Group at UCLA
Our group focuses on understanding materials evolution under extreme conditions using multiscale computational modeling. Formulating theoretical models of materials behavior under a variety of far-from-equilibrium conditions, e.g. shock-loading, very fast deformation rates, high dose and dose rate irradiation, ultrafast heating, etc., requires a deep understanding of a wide range of physical processes.
We develop efficient computational techniques to implement these materials models, taking advantage of large-scale parallel computing capabilities. At every possible scale, our simulations are benchmarked against and validated with experimental data to build confidence in the models.
Specific areas of interest are microstructural evolution and mechanical property degradation in fusion materials, simulations of plastic deformation in alloys, simulations of thermodynamics and phase transformations in functional materials, strength in nanostructured crystals, and simulations of irradiation damage in a variety of situations. The overarching goal of our work is to influence materials synthesis and design by understanding their internal evolution under prescribed conditions.